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We develop a time-dependent numerical algorithm, using a boundary-integral 
approach, to investigate fingering in Hele-Shaw cells. Starting from a sinusoidal 
variation in the initial interface, stable fingers quickly form for a wide range of the 
dimensionless surface-tension parameter. For very low values of the parameter, the 
incipient finger bifurcates. The stable fingers are clearly the same as those obtained 
by McLean & Saffman (1981) using a steady-state algorithm. These steady-state 
solutions were found to be linearly unstable. We resolve this apparent discrepancy 
regarding stability by tracing the fate of small disturbances placed on and about the 
finger tip. We show that some small disturbances do, indeed, grow initially; however, 
they reach a maximum amplitude and decay as they convect backward from the tip 
of the finger to regions where stabilizing surface tension is the major physical force. 
Relatively large imposed disturbances, on the other hand, cause a finger to bifurcate ; 
the critical disturbance amplitude decreases as the surface tension is reduced, 

1. Introduction 
The ‘ fingering ’ phenomenon in Hele-Shaw cells haa been investigated both 

experimentally and theoretically for the past quarter-century. Recently this interest 
has intensified because the phenomenon and the simplified equations that model it 
appear relevant to questions regarding two-phase displacement in oil reservoirs and 
more general investigations of pattern formation in ‘noisy’ systems. In  both cases, 
the most relevant limit is when the stabilizing effect of surface tension is very small. 

Saffman & Taylor (1958), in a classic paper, performed experiments displacing a 
viscous fluid from between two closely spaced plates, a Hele-Shaw cell, with a less 
viscous fluid. They point out an analogy between immiscible displacement in a 
Hele-Shaw cell and the equivalent problem in a two-dimensional idealization of a 
porous medium. In both cases, within a single-phase region of constant permeability, 
conservation of mass and the linear dependence of velocity on pressure gradient yield 
a potential-flow problem. The kinematic boundary condition, that particles on the 
moving interface remain there for all time, is also common to both problems. 
Potential differences between these problems derive from the pressure boundary 
condition on the moving front. In a Hele-Shaw cell, the idealized boundary condition 
is that the pressure jump across the front is proportional to the local curvature of 
the interface when the cell is viewed from above. This assumes that the interface 
curvature in the transverse direction, i.e. between the plates, is constant, an 
assumption that has been seriously questioned by Pitts (1980) and others. For 
porous-media flows, the situation is even less well understood. Experiments by 
Chouke, van Meurs & van der Poel (1959) and Peters & Flock (1981), using model 
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porous media, suggest that acceptable results for linear stability of a slightly 
perturbed plane interface can be obtained by assigning an effective surface tension 
to this interface, proportional to the actual surface tension. Recent theoretical studies 
by Jeraud, Davis & Scriven (1984) suggest that the effective-surface-tension viewpoint 
is an oversimplification. Their more detailed theory includes pore-scale effects and 
leads to different values for the most unstable and neutrally stable wavelengths. 
Neither viewpoint has as yet been extended to the nonlinear regime when the 
interface is grossly distorted. 

Saffman & Taylor (1958) found that a single stable finger ultimately forms in the 
apparatus for a wide range of experimental conditions. The experiments of Pitts 
(1980) confirmed their result. 

Taylor & Saffman (1959) performed a linear stability analysis on steady-state finger 
profiles for zero surface tension, finding that the fingers are linearly unstable. McLean 
& Saffman (1981) extended the analysis to include the effect of finite surface tension, 
finding that these fingers are also linearly unstable. For non-zero surface tension, the 
steady-state finger profiles are determined numerically, using Newton iteration. 

There is an apparent contradiction between theory and experiment - theory 
indicates that fingers are unstable while experiment indicates stability. To complicate 
the situation, Romero (1982) numerically discovered multiple steady-state solutions 
for a range of values of the surface tension. Indeed, Vanden-Broeck (1983) showed 
that there is a countable infinity of such solutions. Linear stability analyses on these 
additional steady-state finger profiles have not been performed to our knowledge. 

Within the context of more general studies, time-dependent calculations simulating 
the two-phase Hele-Shaw-cell experiments have been performed by Meng & Thomson 
(1978) and by Tryggvason & Aref (1983, 1985) using the ‘vortex-in-cell’ method. 
Starting with a sinusoidal variation in the interface with a wavelength equal to the 
channel width, Tryggvason & Aref calculate fingers that evolve to a steady profile 
in a finger-fixed reference frame. For relatively large surface tension, these ultimate 
profiles agree closely with the steady-state results of McLean & Saffman. These 
results appear to establish that, at  least, some fingers are ultimately stable in the full 
nonlinear sense. The vortex-in-cell method employs a fixed rectangular grid; for this 
reason it is not well suited to address the stability issue for low values of surface 
tension where high resolution is vital. 

In order to help resolve the stability issue, we present a time-dependent numerical 
algorithm based on an accurate boundary-integral approach. We find that stable 
steady-state fingers can be formed for a wide range of values of surface tension. 
These fingers are apparently those found by McLean & Saffman (1981) using their 
steady-state algorithm. We provide an explanation for the apparent discrepancy 
between our stable fingers and the linear instability found by McLean & Saffman. 
Tracing small disturbances with both the full nonlinear time-dependent model and 
a simplified ‘linear’ model, we show that some disturbances initially grow, reach a 
maximum, and then decay. The reason for the ultimate decay is that all disturbances 
convect backward, away from the finger tip, to the region where stabilizing surface 
tension becomes the dominant physical effect acting on the disturbance. 

We find that, for very low values of the dimensionless surface tension, an incipient 
finger, rather than progressing toward a fully developed stable finger, flattens at the 
tip and splits. This bifurcation is the result of a nonlinear instability. Placing a recess 
at the tip of a developing stable finger, we show that, above a certain amplitude, the 
recess causes bifurcation. As dimensionless surface tension decreases the amplitude 
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needed for bifurcation decreases until it is within the range of ‘numerical noise ’ that 
is associated with the discrete approximation of continuous functions. 

Recently, branched structures have been observed in two-phase Hele-Shaw 
experiments by Park & Homsy (1985) and Nittmann, Daccord & Stanley (1985). The 
bifurcation we observe for very low surface tension may be the all-important step 
in this process. It is simple to show that when a finger bifurcates, the new situation 
of two fingers progressing up the channel side by side is also unstable. If one finger 
gets a little ahead of the other, it will suppress the growth of the other finger to the 
point where it effectively stops growing. (Saffman & Taylor 1958 observed this 
suppression experimentally during the initial stages of unstable displacement and it 
has been simulated numerically by Tryggvason & Aref 1983.) We now have a single 
finger progressing up the channel again and the situation can recur. From this 
mechanism we should expect a simple tree-like structure, where we have a main 
branch with single side branches at random locations on either side of the main 
branch. For extremely low surface tension, a finger may again bifurcate before being 
suppressed, so more complicated tree-like structures may also be possible. Further 
results, primarily focusing on the low-surface-tension limit, will be available in the 
near future. 

Section 2 gives the basic equations and numerical method used in the fingering 
computations. The full equations and interfacial conditions for unsteady three- 
dimensional viscous flow of two immiscible fluids are given in Wehausen & Laitone 
(1960, p. 453 et seq.). Since the exact problem as posed is effectively intractable, we 
consider here the ‘ standard ’ simplified problem as formulated by previous workers 
(with the notable exception of Pitts 1980). A partial statement of the simplifying 
assumptions leading to these ‘ Hele-Shaw equations ’ may be found in Tryggvason & 
Aref (1983). See also the recent work of Park & Homsy (1984). It is important to 
remember that the Hele-Shaw equations do not correctly predict the experimentally 
observed ratio of developed finger width to channel width and the reason for the 
discrepancy is not well understood. When surface tension is small, however, both 
experiment and theory obtain values of this ratio that are close to 0.5. 

In $3 we present numerical results for the growth of an imposed initial disturbance 
on a flat interface. For a range of values of surface tension these disturbances become 
steady-state fingers whose widths are in close agreement with the calculations of 
McLean & Saffman (1981). The effect of perturbations of these developed fingers is 
then explored. Two distinct effects are observed : either the disturbance ultimately 
decays after some period of growth, or the disturbance causes the finger to bifurcate 
a t  its tip. 

A heuristic model of disturbance growth is presented in $4. For small surface 
tension, a perturbation is idealized as a localized pulse that passively convects 
backward along a developed finger. As it moves, its Fourier spectrum is altered using 
a local-stability argument. The resulting growth and decay are qualitatively similar 
to our numerical results and the apparent contradiction between predicted instability 
and observed stability may thus be better understood. Our simplified model is 
somewhat similar to the amplitude-ratio methods discussed by Reshotko (1976) in 
his survey of boundary-layer stability. 

Results of the present study are summarized in $5.  
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FIQURE 1. Sketch of the Hele-Shaw cell. 

2. Equations and numerical method 
We assume a cell of infinite length in which air is pushing a liquid, as shown in 

figure 1. The pressure in the air is a constant, which we may take to be zero. The 
pressure p in the liquid, region R, is a function of the spatial coordinates z and y. 
Since the plate spacing is assumed to be small compared with other lengths in the 
problem, we have 2-dimensional Poiseuille flow locally, in the liquid, yielding the 
following relationship between the depth-averaged velocity and the pressure 
gradient : 

(1) 

where b is the plate spacing and p is the liquid viscosity. Assuming the liquid to be 
incompressible, the continuity equation is 

b2 
V = - M W p ,  M = -  

12p ’ 

v-6 = 0. (2) 

vzp = 0. (3) 

Combining the two equations, we obtain Laplace’s equation for the pressure in the 
liquid : 

At the aipliquid boundary, denoted by aR in the figure, the pressure on the liquid 
side is augmented by surface tension from its value of zero on the air side by the 

where 8 is the arclength along the surface, measured from some reference point, 0 
is the angle the tangent to the surface makes, with respect to some reference direction, 
and t~ is the surface tension. Viewed from the liquid, p is positive at any point where 
the surface is concave. 

On the moving interface aR the kinematic boundary condition, that a particle on 
this boundary remain on the boundary for all time, must also be satisfied. Restated, 
this condition is that the normal component of fluid velocity, with Cartesian 



Two-phase displacement in Hele-Shaw cells 387 

components (u, v), of a particle occupying a point on the surface, is equal to the normal 
component of the surface velocity (xt, yt) at that point. Thus 

(u, V ) ’ R  = (Xt, yt)*A ((2, y) E W ,  (4b) 

where R is a normal vector to i3R and subscripts signify time differentiation. Because 
Hele-Shaw flow is a subset of creeping motion, inertial contributions to the interface 
motion are neglected and surface velocity components, found by solving (3) at each 
instant of time, yield the instantaneous surface motion according to (4b). 

On the sidewalls of the cell, the normal component of fluid velocity is zero, i.e. 

aP - = o  ax (x=f+L) ,  

where L is the channel width. The no-slip boundary condition for viscous flow 
cannot be imposed within the framework of the Hele-Shaw model. 

At upstream infinity we aasume constant velocity, 

where Q is the volumetric flow rate into the channel and 
direction of increasing y .  

is a unit vector in the 

Transforming to dimensionless length, pressure and velocity, 

we have the following equations and boundary conditions for the liquid: 

ij = - v p  ((2, y)ER); 

v2p = 0 ((5, Y) 

where we have dropped the primes. The kinematic boundary condition (4 b) remains 
unchanged, where, using (7), the time is measured in units of bL2/Q. The only 
parameter we have is the ‘dimensionless surface tension’ 

Because the liquid domain R in the ( z  = x+iy)-plane is semi-infinite, Laplace’s 
equation will be solved in the transformed ([ = E+iq)-plane. The conformal map 

[=  eaniz 

takes the unit sink at upstream infinity into a unit sink at the origin in the [-plane. 
The moving boundary aR(t) maps to the closed curve surrounding the origin aR,(t). 
The liquid region R maps onto the annular region Rc bounded by aR, and a small 
circle enclosing the origin and, because the flow is assumed to be bilaterally symmetric 
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about the channel centreline in the z-plane, the complex velocity df/dc is analytic 
within that annulus. Numerical values of the complex potential f = p +  i+ are 
unaffected by the mapping. 

At any point within or upon aR,, the complex potential is given by the superposition 
of contributions from the unit sink at the origin and distributed sources on aR,, i.e. 

1 L  

The source line density q is a real function to be determined as part of the solution. 
Here s1 may be taken as arclength on aR,. With p = Re {f} given by (12), the integral 
equation for the source density is 

c 

where vertical bars denote the modulus of a complex number. Having determined 
q, the induced velocity at a point 6, approaching aR, from within, is given by 

Here /3 is the inclination of a segment of aR, measured counterclockwise from the 
direction of increasing Re (0. The integral is of Cauchy-principal-value type and 
the last term is the local contribution to the velocity which is most easily obtained 
using Gauss' theorem. The boundary-integral formulation in (13) can be shown to 
be equivalent to a method based on Green's formula; this relationship and the 
relevant existence proofs are discussed by Jaswon & Symm (1977, chap. IV). 

We choose to march the solution in time using a full Lagrangian description, i.e. 

Finally, the velocities are transformed back to the z-plane by 

Note that, from (4b), only the normal component of (14) need be satisfied. The full 
Lagrangian description allows us to monitor the surface dilation, which is sometimes 
also of interest. 

The numerical solution is accomplished by representing the free surface in the 
z-plane by a set of 2N+ 1 points or nodes. At  any instant of time, the potential p at 
these nodes is calculated using a discrete version of condition (1Oc). After mapping 
the nodes to the [-plane, the potentials at the midpoints, between the nodes, are 
determined by interpolation. The source distribution is taken to be piecewise constant 
and the integrals in (13) are discretized, under this assumption, using formulas 
derived by Botha & Pinder (1983, $4.6). The resulting linear system for the source 
distribution from (13a) is solved and the [-plane velocities are calculated from 
(13b). After interpolation back to the nodes, the velocities are transformed to the 
z-plane using (14b). Note that, because of the assumption that the surface is 
bilaterally symmetric in the z-plane, and hence in the [-plane as well, the linear 
system to be solved is only of dimension N. 

Given the node positions at any time and finding the corresponding particle 
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velocities by the above procedure, the surface evolution reduces to the solution of 
a coupled system of first-order nonlinear ordinary differential equations. Since the 
problem becomes stiff for higher values of the dimensionless surface-tension parameter 
7 ,  we have implemented a software package that has an option for solving stiff 
ordinary differential equations (ODE’S), LSODE (Hindmarsh 1980), finding it 
efficient, accurate and easy to use in this application. 

Particularly at low values of 7 ,  velocities at  the surface of the moving boundary 
are essentially normal to the surface. Node points, at the tip of a finger propagating 
into the liquid, take trajectories which quickly make the spacing large near the finger 
tip. To maintain good coverage at the tip, we redistribute points along a cubic-spline 
representation of the interface at regular intervals in time. In  performing the 
redistribution, we place more points at  places of high curvature by having the grid 
spacing A8 inversely proportional to a linear function of the curvature 

where c is a constant. 
Since we wish to address the question of stability with the time-dependent 

computations, we must have sufficiently fine grid spacing to depict all potentially 
unstable modes. If the interface is flat and infinite, we have the following results from 
a linear stability analysis (Saffman & Taylor 1958, Chouke et al .  1959): 

1,JL = 27cr4; (16) 

Z,,,/L = 27c (37):; (17) 

where l,, refers to the critical wavelength below which modes are stable, and I,,, 
refers to the wavelength of maximum growth rate. The maximum grid spacing which 
can adequately describe a given sinusoidal disturbance is about one quarter the 
wavelength. We therefore can write the following inequality for the grid spacing 
needed to describe the evolution of a flat interface : 

As,,, < 0 . 5 ~ ~ 4 ,  (18) 

where As is measured in units of the channel width L. As the evolving surface deviates 
significantly from flat, we use local conditions to determine the maximum local grid 
spacing 

As,,, < O . ~ X ( ~ / U ) : .  

Here, u is the local interface velocity in units of QlbL. 
Unless otherwise stated, the computations used N = 50, which is sufficient to 

satisfy inequality (19). A finer spacing was sometimes used to ensure convergence. 
The constant c in (15) is taken to be one. 

3. Results of the computations 
In this paper, we wish to focus on whether a single stable finger can be formed, 

particularly at  low values of 7 .  To speed up the development of a single finger, we 
therefore impose a sinusoidal variation in the position of the initial interface in the 
time-dependent computations. The wavelength of the sinusoid is one, the channel 
width ; the phase is chosen so that the peak is at the centre of the channel ; and the 
amplitude is 0.05 for the computations shown here. 

Figure 2 shows results of the time-dependent computations for a wide range of the 
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RCXTRE 2. The computed time-evolution of an interface with an imposed sinusoidal variation of 
amplitude 0.05 (lowest curve), for different values of 7. The interface curves are shown at time 
intervalsof0.5.(a)~ = 0.02,@)0.008,(~)0.004, (d)0.002,(e)0.001, (f)0.0005, (g)0.0003(h)0.00025, 
(i) 0.000225. 

surface-tension parameter 7.  For all but the lowest value of 7 shown, the initial 
small-amplitude sine wave quickly grows to form a stable finger. For high values 
of 7 ,  the troughs that are formed move upward, perceptibly, and tend to round out, 
while, for low values of 7 ,  the troughs, once formed, are essentially stagnant. It is 
easy to show, from the linear stability analysis, that, for 7 = 0.0253, the initial 
small-amplitude sine wave would be neutrally stable. We have verified this with the 
nonlinear time-dependent computations. For values of 7 above this critical value, the 
small-amplitude initial sine wave decays. We cannot, therefore, generate stable 
fingers for 7 > 0.0253, by this method. 

In  figure 3, we show the asymptotic value of finger width A for various values of 
the control parameter 7.  Our results (triangles) are compared with results of 
Tryggvason & Aref (1985), given by circles and crosses, and the steady-state McLean 
& Saffman calculations (solid curve). In order to simplify direct comparison of these 
results, the control parameter is taken as Z,,,/L, related to T by (17), since 
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lmaX/L = 2r(37)1 

FIQURE 3. Variation of ultimate values of finger width A with 7. The solid line is the steady-state 
computations of McLean & Seffman (1981); triangles denote time-dependent results from this 
study; circles and crosses are time-dependent results of Tryggvason & Aref (1985). 

Tryggvason t Aref choose this format to present their points. Our values of 7 range 
between 0.00025 and 0.02 corresponding to values of lmax/L between 0.172 and 1.534. 

For the time-dependent calculations, it is necessary to state explicitly the criteria 
used to establish limiting values of A. At steady-state conditions, mass conservation 
yields u1 h = 1, where u1 is the translational speed of the finger. In  the time-dependent 
results, as A approaches its limiting value, the speed at the finger tip must also reach 
a limit, as given by this simple relation. Our data (triangles) are calculated as the 
limiting value of the tip speed, i.e. the surface velocity on the channel centreline. In 
all cases shown, finger widths correspond to three-decimal-place convergence as the 
finger progresses down the channel. 

Various input parameters influence the asymptotic values of A. Specifically we 
monitor, by repeated runs at the same value of 7 ,  the rate of convergence of A with 
time, the accuracy of the time-stepping calculations, the number of points used to 
represent the profile, and the time intervals at which the points are redistributed. 
The first two criteria may be dismissed most simply. Three-place convergence of h 
with time was achieved in all cases shown in less than 1.5 time units, although the 
rate of convergence decreased as 7 was reduced. The LSODE package used for the 
time integration allows the user to specify an error tolerance; this tolerance was 
always set at the level required to make negligible the potential errors arising from 
this integration. Because the interface dilates strongly at the tip, the last two control 
parameters are interrelated. For the points represented by open triangles in figure 3, 
50 points per half-channel width were used. This was always sufficient to satisfy 
the criterion of four points per unstable wavelength, using local conditions, and the 
time interval between point redistribution At8 was taken as 0.05. 

Particularly for the small values of 7 ,  the values of A were still somewhat sensitive 
to the choice of At, and the number of points used to describe the profile. For all A, 
convergence in At, is obtained using a value of 0.0125. Decreasing this parameter costs 
little in computation time. To test convergence with the number of grid points, we 
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TY 8 16 32 

0.001 0.529 (33) 0.521 (59) - 

0.002 0.543 (26) 0.533 (46) 0.530 (81) 
0.004 0.566 (21) 0.551 (35) 0.547 (65) 

0.0005 splits 0.510 (79) - 

TABLE 1. Finger width at various values of T for different values of n, the number of grid points 
perlocal criticalunstablewavelength. Numbersinparenthesesarethe totalnumberofgrid point son the 
surface. 

introduce a point-redistribution scheme that is somewhat different from the procedure 
described in $2. Points are redistributed along the surface with a local spacing given 
by 

where u is the local interface speed in the normal direction, and n is the number of 
grid points per local neutrally stable wavelength, the latter being given by (16). Using 
this new criterion, the number of points used to represent the profile increases as the 
finger grows. 

Table 1 gives h as a function of n for values of 7 of 0.0005,0.001, 0.002 and 0.004 
(Zmax/L = 0.243,0.344,0.487 and 0.688). Convergence from above is suggested with 
a convergence rate going approximately like 1/W, where N is the total number of 
grid points. In the figure the solid triangles represent the values of A obtained from 
table 1 using the largest value of n for which computations were performed at each 
7-value. There is seen to be good correlation with the McLean & Saffman curve. 

For comparison, the results of Tryggvason & Aref (1985) are shown as open circles, 
solid circles and crosses, corresponding to 8,16 and 32 grid spacings per channel width 
respectively. Their vortex-in-cell technique works well for values of Zmax/L in excess 
of 0.8; however, for Zmax/L = 0.4, the smallest value for which they present results, 
their contention that the solution has a h-value significantly smaller than the 
McLean-Saffman result is not supported by our calculations. Even for their finest 
rectangular grid, resolution in the critical finger-tip region is very much less than that 
of the boundary-integral method with periodic point redistribution. Figure 4 
illustrates this by showing the point distribution of the steady-state finger for 
7 = 0.0005 and n = 16. Conversely, the vortex-in-cell method may well be the 
algorithm of choice for larger values of 7 ,  especially when the interface is highly 
convoluted. 

In  figure 5 we show the evolution of an interface with a sinusoidal variation, for 
the same parameters as those in figure 2 (b) .  We show the evolution for a longer time 
to establish that a steady state has indeed developed. We have run this simulation, 
for more than twice the time shown in figure 4, with no change in the result. The 
value of 7 of 0.008 is the value at which the channel width equals the wavelength 
of maximum linear growth (see (17)). 

Figure 2(i) illustrates a very interesting phenomenon when we attempt to grow 
a steady-state finger for the very low value of T of 0.000225. The incipient finger, 
rather than taking the path to steady state, flattens at the tip and splits in two. This 
finger bifurcation was observed by Paterson (1981) in circular-Hele-Shaw-cell 
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"... .... .. . . . . . , 

FIQURE 4. (a) High-accuracy computation of a steady-state finger at 7 = 0.0005 ( A  = 0.510) 
illustrating the grid-point distribution. (b)  The point distribution about the tip magnified 5 times. 

FIQURE 5. The same as figure 2 ( b )  except the computation is shown for a longer time, 
indicating that a true steady-state finger has been formed. 
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FIGURE 6. The effect of an instantaneously imposed recess of very small amplitude on the 
subsequent development of a finger, indicating that the fingers are linearly stable but nonlinearly 
unstable. The interface curves are presented at time intervals of 0.1. 

experiments. (We have also simulated the circular geometry numerically and we 
observe finger bifurcation. These results will appear in a later paper.) 

We conjecture that the splitting occurs because the fingers, for arbitrary T ,  are 
nonlinearly unstable, i.e. developed fingers may well be stable to infinitesimal 
disturbances for all finite values of T ;  however if sufficient noise is present the finger 
will split at or near the tip. This critical noise level decreases as T is reduced. The 
numerical noise in our algorithm is sufficient, for the case shown in figure 2 (i), to cause 
tip splitting. 

To demonstrate that fingers are nonlinearly unstable, we introduce a small- 
amplitude recess at the tip of the developed stable finger in figure 4 (T = 0.0005, time 
t = 2.0) and trace the subsequent evolution in figure 6.  The recess can be described 
as follows : 

(Ax, AY) = A cos (2xsllcr) (722, my) ( I s  I < +lcr), 

( I s  I 2 ilcr), = O  

where A is the amplitude of the disturbance, (nz, nu) is the outward normal to the 
finger profile, Zcr is the local critical unstable wavelength at the finger tip, and s is 
the arclength. The arclength is taken to be zero at  x = 0, the finger tip, and is positive 
when x is positive. The disturbance amplitude A is -0.000225 in figure 6. As we see 
in the figure, this very small disturbance is sufficient to cause the finger to bifurcate. 
Conversely, a disturbance with an amplitude of - 0.0002 gives an evolution in which 
the h g e r  does not bifurcate. The finger first fattens and then necks down, ultimately 
returning to its steady-state shape. Thus, we demonstrate that finger bifurcation, for 
this value of T ,  is a nonlinear instability in which a disturbance must be of sufficient 
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Critical 

0.0005 0.00021 
0.001 0.002 13 
0.002 0.0156 

TABLE 2. The critical amplitude for instability for different values 
of 7. The uncertainty is less than 5 %. 

7 amplitude 

amplitude to cause the splitting. In table 2, we list values of the critical amplitude 
for bifurcation for three different values of 7,  determined to within 5 % by a binary 
search. As we can see from the table, the critical amplitude drops dramatically with 
7 ,  decreasing by about an order of magnitude as 7 decreases by a factor of 2. We will 
examine fmger stability in more detail in the next section. 

4. A model stability analysis 
A simplified model may be constructed that exhibits the basic features leading to 

bounded growth of a small-amplitude disturbance. It is an heuristic model that 
assumes localized disturbances that are passively convected backward with the local 
particle velocity. For small values of the surface-tension parameter 7 ,  the shape of 
a,developed fmger is closely approximated by the Saffman-Taylor solution for 7 = 0 
and A = 4, 

in a tip-fixed coordinate system. The arclength 5, measured from the tip, is given by 

(21) 

The surface normal at a point s is at an angle 19 with respect to the oncoming stream 
whose velocity is U .  Because the potential is approximately constant for 7 < 1, the 
induced velocity of the singularity distribution is essentially normal to the interface. 
Thus the particle velocity of the liquid, at the interface, is given by 

(22) 

and U is equal to 2 in dimensionless units for A = t .  
We now consider a localized disturbance of small amplitude that is passively 

convected, from its initial position s1 at time t = 0, backward along the finger with 
the particle velocity us. Assuming that its breadth is small compared to the local 
radius of curvature, the disturbance will ‘see ’ an essentially constant normal velocity 
given by 

(23) 

cos 2xy, (20) eZnz = 

tanh 2x5 = sin 2xy. 

us = U sine = U tanh2m 

U 
cosh 2x5. 

un = ucose = 

We identify un with the destabilizing velocity in the stability calculation for a plane 
interface translating at  constant speed. A mode with wavenumber k will grow 
according to 

eWt cos kx, 

where o = kun-7k3. (24) 
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sinh ~ R S ,  = e4nt sinh ~ X S ,  (25) 

using (20) with U = 2. Let 1, be a characteristic width of the pulse when it is centred 
initially at  s,. As it moves backward it  dilates to a dimension 1, according to 

1 2 -  ds, - - tanh2xs2 
1, ds, tanh2xs1 
-- - 

using (25) and the assumption of small pulse width. The pulse is taken to have the 
bilaterally symmetric Fourier integral representation 

f(S, t )  = Jam A(k, t, I,) COS k8 dk, 

where 9 is measured from the instantaneous centre of the convected waveform. The 
initial spectrum is given by A(k, 0, I,) which evolves to 

A(k, t ,  1,) = A(k ,  0, I , )  exp( JOw w(t ' )  dt') . 

Using (22)-(25), the growth factor is found in closed form as 

tanhxs, lclzn 

tanh xs, 
exp ( JOw w(t') dt') = [ ] exp ( -7k3t). 

Qualitative predictions of the fate of a sufficiently small initial disturbance can now 
be made using this model. The centre of a disturbance will convect backwards from 
its initial position in a tip-fixed frame of reference. Ultimately its velocity will become 
constant, corresponding to the disturbance stopping at a fixed position in laboratory 
coordinates. A t  early times the disturbance amplitude will grow but must eventually 
reach a maximum and then decay. The magnitude of the growth depends on the initial 
position of the disturbance, becoming large when s, is small. During the growth and 
decay, the width of the disturbed region must increase owing both to the dilation 
in (26) and also to the earlier decay of the large-wavenumber components as given 
by the last factor in (29). As an example we calculate the time history of a trapezoidal 
disturbance of total width 0.06 initially centred at s1 = 0.13 with 7 equal to 0.0003. 
The evolution of the pulse shape, according to (27), is shown in figure 7. For 
comparison we show, in figure 8, a nonlinear time-dependent calculation with a 
relatively large pulse introduced a t  these conditions. As predicted by the linear model, 
we seen that the disturbance grows rapidly at first but ultimately reaches a limiting 
height and begins to decay. At  the same time the disturbance spreads laterally, 
assuming a shape that is somewhat similar to those given in figure 7. The central crest 
of the disturbance is seen to move forward a short distance, in laboratory coordinates, 
before stopping. The amplitude of the initial bump, 0.003, is much larger than that 
required to split the finger a t  this low value of 7.  Because it was introduced some 
distance from the finger tip, it  produces only a transient change in finger shape. 

The stability of a developed finger in a Hele-Shaw cell can now be re-examined 
in the light of the numerical and model results presented above. Taylor & Saffman 
(1959) considered the stability of fully developed fingers for 7 = 0 and this work has, 
more recently, been extended to finite surface tension by McLean & Saffman (1981). 
In both cases small perturbations to the steady-state solution are assumed to be of 
the form exp (wt) times a function of the space coordinates. To the extent that (eigen-) 
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FIQURE 7. The evolution of an initial disturbance on the finger using the simplified linear model. 
The arclength 8 is measured from the centre of the disturbance, which is convecting backwards. 
The amplitude is the perpendicular distance from the undisturbed to the disturbed finger, and t 
is time. 

FIGURE 8. The effect of an instantaneously imposed disturbance of amplitude +0.003 on the 
subsequent development of a finger. The interface curves are presented at time intervals of 0.1. 
See figure 2(g) for comparison with the unperturbed evolution. 

solutions of the linearized problem, corresponding to values of w with positive real 
part, can be found, the underlying steady-state solution is considered to be unstable. 
Such eigensolutions were found to exist with or without surface tension. Taylor & 
Saffman (1959) conclude that the results of their stability analysis are at variance 
with experiment since apparently steady-state fingers can be produced in the 
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laboratory without difficulty. In the later paper it is suggested that the resolution 
of this paradox is associated with the neglect of the variation of the component of 
interface curvature in the plane perpendicular to the plates of the cell. While this 
second curvature variation may explain the discrepancy between predicted values 
of ultimate finger width and the experimental observations (viz Pitts 1980), a simpler 
explanation would appear to suffice for the stability question. As the present 
numerical work suggests, a small-amplitude disturbance is convected backwards in 
a tip-fixed coordinate system. Roughly speaking, the destabilizing influence of the 
normal component of velocity can only produce a finite alteration of the finger profile, 
this alteration decreasing as the magnitude of the disturbance decreases. Provided 
that the disturbance is not large enough to cause the finger to split, it will ultimately 
decay. The presence or absence of ‘instantaneous’ instability would appear to be too 
severe a test. Only if a coordinate system translating with conertant velocity could 
be found in which unstable eigenmodes remain stationary in space can ‘operational’ 
linear instability be inferred. 

5. Conclusions 
Using our nonlinear time-dependent algorithm, we have shown that a stable finger 

can be formed for a wide range of dimensionless surface-tension values starting from 
a sinusoidal variation in the interface. Comparing finger widths it is clear that the 
stable fingers are the same as those obtained by McLean 6 Saffman (1981) using a 
steady-state algorithm. For sufficiently large values of surface tension, our results 
confirm the time-dependent calculations of Tryggvason & Aref (1 985) using the 
‘ vortex-in-cell ’ method. 

We have shown that there is no apparent contradiction between our stable fingers 
and the linear instability found by McLean & Saffman. There are, indeed, disturbances 
that grow initially, reach a maximum amplitude, and then decay. This type of linear 
stability analysis can only really prove the stability of a steady-state configuration. 
A fmding of linear instability, though suggestive, can be misleading, as in this case. 

We have also shown that the fingers are nonlinearly unstable. In a sense, this is 
an obvious result. It is clear that a deep notch placed in the tip of the finger will not 
‘heal ’ at least for smaller values of dimensionless surface tension. The principal 
result is that the amplitude of the notch necessary for splitting the finger is very small 
for small dimensionless surface tension. 

We have systematically analysed the effects of recesses and protrusions at  various 
locations on the finger. We find that a recess at  the tip has the largest ultimate growth, 
by far. We have tried large-amplitude disturbances on the side of the finger and we 
have not been able to grow a vestigial finger on the side. It seems clear, therefore, 
that a vestigial finger on the side of a growing finger can only be generated by a 
bifurcation at the tip. One of the resulting fingers becomes suppressed, while the other 
growing finger centres and expands in the channel, leaving a vestigial finger. 

While this paper was under review, our numerical algorithm was generalized by 
removing the requirement of bilateral symmetry. The resulting simulation of finger 
motion, for small 7 ,  clearly illustrates the tip-splitting mechanism followed by a period 
of competition between the two resulting branches with ultimate dominance by one 
of them. The process repeats as the ‘winner’ progresses down the channel, leading 
eventually to a profile with multiple, essentially stagnant, side branches. Further 
details may be found in DeGregoria & Schwartz (1985). Recent experimental studies 
at  small 7 (Park & Homsy 1985 and Nittman et al. 1985), provide confirmation for 
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this process. The fact that finger splitting had not been observed in previous 
experiments is probably due to the use of narrower cells yielding larger values of 7. 

While agreement between computation and experiment is now good at  small 7, 
there is still a significant discrepancy between observed and predicted finger width 
at large 7-values. This discrepancy is perhaps due to the variation in the radius of 
curvature in the third dimension with interface speed, as suggested by Pitts (1980). 
There has also been speculation that the neglect of this effect might account for the 
discrepancy between experimentally stable fingers, on the one hand, and the linear 
instability of theoretically computed fingers, on the other hand. The analysis of 
small disturbances given here seems to indicate that there really is no significant 
discrepancy after all. 

We do not appear to have generated any of the multiple steady-state fhger 
solutions of higher finger width that Romero (1982) or Vanden-Broeck (1983) have 
found. This may indicate that these other steady-state solutions are significantly less 
stable than the primary one, or it may simply mean that, starting from a sinusoidal 
variation in the interface, we achieve the steady-state fmger with the smallest width 
for a given value of surface tension. One way to resolve this issue is to compute the 
profile for one of these wider steady states, start the time-dependent algorithm in 
this state, and see if the finger propagates unchanged. We hope to examine this in 
the near future. 

An interesting and potentially important question concerns the stability of 
developed fingers a t  very low surface tension. Our heuristic-model calculation in $4 
indicates that fingers can be linearly stable. This stability is confirmed by the 
numerical results for 7 > 0.00025. Finite-amplitude disturbances have been shown 
to cause tip splitting for larger 7. Thus, linear stability but nonlinear instability is 
demonstrated for a range of values of 7.  Whether fmgers remain linearly stable for 
arbitrarily small 7 ,  or become linearly unstable at a small finite value of 7 ,  is not 
answerable by us at present. We suspect the former, however, because it provides 
the simplest explanation consistent with the numerical and experimental results 
available to date. We have demonstrated that the noise level required to cause tip 
splitting decreases very rapidly as 7 is reduced. Thus tip-splitting may always be 
expected to occur in Hele-Shaw experiments a t  high capillary number because some 
small level of noise is unavoidable. Since the Hele-Shaw model is increasingly being 
looked upon as a prototype case for studies of pattern formation in other nonlinear 
systems, the answer to this stability question may have important theoretical 
implications. 

We are happy to acknowledge our indebtedness to Dr Ben White and Professors 
Greg Baker, Philip Saffman, and George Homsy for useful discussions of the fingering 
phenomenon. 
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